Can surface eye temperature be used to indicate a stress response in seals (*Phoca vitulina*)?

Amelia MacRae and David Fraser

Introduction

- Many mammalian species demonstrate a change in eye temperature (ET) in response to stressful, and possibly to painful routine procedures.
- Non-invasive infrared thermography (IRT) is increasingly being used to measure physiological stress responses in animals via changes in ET.

Objective: To determine whether the ET of harbour seal pups changes in response to routine handling (capture and restraint)

Methods

- Healthy ~ 90 d old pups randomly allocated to one of 2 treatments (*n* = 26 per treatment)
- ET recorded every ~10s with FLIR T300 IRT camera

Treatment 1 (handled once)
Baseline (3 min)	10 min break	Period A (3 min)	Period B (3 min)
No handling | No handling | Restraint

Treatment 2 (handled twice)
Baseline (3 min)	10 min break	Period A (3 min)	Period B (3 min)
No handling | Restraint | Restraint

- Max ET calculated for each image using FLIR Tools + software
- Images from each 3-min recording period of each pup were then pooled

Results

- Compared to baseline, ET of pups restrained the first time increased 0.5 ± 0.18 °C (mean ± SE, *p* < 0.01) more than that of pups not handled.
- ET of pups that underwent a second handling increased a further 0.7 ± 0.08 °C (mean ± SE, *p* < 0.001) from the first time they were handled to the second time.

Conclusions

- Higher ET of handled vs. non-handled pups suggests that handling and restraint cause a physiological stress response detectable via IRT.
- Increased ET the second time pups were handled suggests the first handling likely was aversive, resulting in an anticipatory response to their second handling.
- These results show promise for the use of ET to indicate a stress response and for evaluating routine procedures in seals.

We thank the staff and volunteers at the Vancouver Aquarium Marine Mammal Rescue Centre. Amelia MacRae was supported by an NSERC-CGS-D scholarship.